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ABSTRACT

Crowd counting, aiming at estimating the total number of

people in unconstrained crowded scenes, has increasingly re-

ceived attention. But it is greatly challenged by the huge

variation in people scale. In this paper, we propose a nov-

el Multi-View Scale Aggregation Network (MVSAN), which

handle the scale variation from feature, input and criterion

view comprehensively. Firstly, we design a simple but effec-

tive Multi-Scale Feature Encoder, which exploits dilated con-

volution layers with various dilation rates to improve the rep-

resentation ability and scale diversity of features. Secondly,

we feed multiple scales of input images into networks to gen-

erate high-quality density maps in a coarse-to-fine manner.

Finally, we propose a Multi-Scale Structural Similarity loss

to force our networks to learn the local correlation of density

maps. Extensive experiments on two standard benchmark-

s show that the proposed method can generate high-quality

crowd density map and accurate count estimation, outper-

forming the state-of-the-art methods with a large margin.

Index Terms— Crowd Counting, Multi-Scale Feature,

Input View, Feature View, Criterion View

1. INTRODUCTION

With the rapid growth of the urban population, public safe-

ty has become a great challenge in city management. Most

safety control measures relied on crowd counting, which

estimates the crowd number from images and surveillance

videos. However, the large scale variance of people from mas-

sive street images from social networks and real-time surveil-

lance, is still one of the main obstacles for accurate estima-

tion.

However, precisely estimating the count of crowd is ex-

tremely difficult. The major challenge is how to handle the

huge variation of people scale. As shown in Figure 1, the s-

cales of people range from a tiny dot to hundreds of pixels.

Rather than directly regress the total number of people, the

current methods acquire the count estimation by generating
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Fig. 1: Visualization of people with various scales in unconstrained crowd-

ed images from ShanghaiTech [1] dataset. Corresponding density maps are

visualized in the bottom line. The huge scale variation of people is a major

challenge limiting the performance of crowd counting.

the crowd density map from the given image, which contain-

s the spatial distribution information of crowd and is more

meaningful for proceeding applications.

With recent advanced deep convolutional neural network-

s(CNN), numerous network architectures have been proposed

to address the task of crowd counting and have achieved re-

markable performance [1, 2]. Among these methods, multi-

scale architectures are the mainstream and most of them han-

dle the scale variation of people with a multi-path network

with different convolution kernel sizes on different paths.

However, these methods still suffer from the following issues.

Firstly, the limited paths restrict the capacity of multi-scale

representation learning. Aimlessly increasing the number of

paths is not worthy, since the optimization of mass integral pa-

rameters of these paths could fail on diversified scales feature

learning, as revealed in [3]. Secondly, these networks contain

multiple pooling layers and generate the low-resolution den-

sity maps, which are too coarse to estimate the accurate crowd

count. Moreover, their insufficient exploration of pixels rela-

tion on the density maps leads to criticized blurring density

maps.

To address the aforementioned drawbacks of curren-

t methods, we propose a novel neural network framework,

named Multi-View Scale Aggregation Networks (MVSAN),

which comprehensively handle the scale variation from fea-

ture view, input view and criterion view. In feature view,

we design a simple but effective Multi-Scale Feature Encoder

(MSFE) to learn the scale robust representation. Specifically,

our MSFE consists of three columns of CNNs, each of which
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has four dilated convolutional layers. With different dilation

rates, these columns have various receptive fields and can re-

spectively model the appearance of people on different scales,

thus boost the scale diversity of features. Moreover, with s-

tacked MSFE, more feature from diversified scales are aggre-

gated. In input view, we feed multiple scaled versions of an

input image into our MVSAN to generate high-quality density

maps in a coarse-to-fine manner. Our MVSAN is built upon

two stacked CNNs, each of which is composed of a front-

end Fully Convolutional Network (FCN) and three stacked

Multi-Scale Feature Encoders. The first CNN takes the orig-

inal image as the input and generates a coarse density map.

Taking the image with high resolution as input, the second C-

NN refines the result of the first CNN and produces an accu-

rate density map. In criterion view, we utilize a Multi-Scale

Structural Similarity (MS-SSIM) loss to enforce our network-

s to learn the local correlation of multi-scale patches on the

density maps. It is adapted from the Multi-Scale Structural

Similarity Metric [4] and strengthened with dilated convolu-

tional operations. Firstly, we build a criterion network with

several fixed Gaussian kernel convolutional layers. Then, we

feed the estimated density map and the ground truth map into

the criterion network, and enforce SSIM loss between their

output maps at every convolutional layer. To summarize, the

main contributions of this work are three-fold:

• We propose a Multi-View Scale Aggregation Networks

to comprehensively handle the huge variation of peo-

ple scale. It integrates two front-end FCN and stacked

Multi-Scale Feature Encoders to extract the scale robust

feature and generate the density map in a coarse-to-fine

manner.
• We design a novel training criterion, named Multi-

Scale Structural Similarity (MS-SSIM) loss, which

forces the networks to learn the local correlation of

multi-scale patches on the density maps and generate

high-quality density map and accurate crowd count.
• Extensive experiments and evaluations on two chal-

lenging benchmarks show that our proposed method

achieves superior performance in comparison to other

state-of-the-art methods.

2. RELATED WORKS

Recently, deep neural network has been widely used in ur-

ban management [5, 6, 7] and lots of inspiring crowd count-

ing methods have been proposed. In this section, we provide

a brief review of these deep learning based crowd counting

methods. We will discuss these methods from aspects of the

feature, input and criterion view.

1) Network design for feature extraction: Most of the cur-

rent density map based methods endeavored to surmount the

main obstacle of the large diversity of crowd scale and de-

signed networks to extract multi-scale feature. Pioneeringly,

Zhang et al. [1] proposed a multi-column convolution neural

network with different receptive fields in different columns to

learn the feature of different scales. Sam et al. [8] adopted

the same multi-column network with an additional VGG net-

work [9] which is trained to route input images to appropriate

columns of the network to boost the multi-scale feature learn-

ing. Criticizing the limited scale adaptability of multi-column

structure, Shen et al. [10] imitated a multi-scale U-Net archi-

tecture and Li et al. [3] aggregated multi-scale feature with

dilated convolutions from the VGG feature. Lately, Deepak

et al. [11] invented a growing network which could iterative-

ly expand its model capacity to deal with diversified people

scale. With these observations, we conclude that diversified

multi-scale feature learning is of the highest significance on

the estimation of crowd count and density map.

2) Integration of multiple input: Multi-scale inputs are a

practical method widely applied in the area of computer vi-

sion including crowd counting. Onoro-Rubio et al. [12] pro-

posed to use a pyramid of image patches of multiple scales to

estimate the final density. With learning to rank between the

count number of child-patches and parent-patches inputs, Li-

u et al. [13] integrated unlabeled crowd images to train their

network for crowd counting.

3) Criterion design on crowd counting: Previous work-

s considered less of the correlation between pixels on the

density maps and dominantly applied Euclidean loss function

to learn the pixel-wise regressions independently[1] [2] [3].

However, as criticized in [10], the Euclidean loss misled the

network to generate blurring density maps with attenuated

multi-scale feature encoding. Thus, a complicated compound

of adversarial loss [14], perceptual loss [15], and Euclidean

loss were used in [10] to overcome the unpleasant density

map quality. But the generated density maps were still far

from satisfactory. While Cao et al. [16] explored a combi-

nation of local structural consistency and Euclidean loss and

obtained a state-of-the-art performance. But these method-

s penalized either the pixel-wise error or the mismatch of

single-scale local structure instead of multi-scale local struc-

tural inconsistency, which is greatly expedient to the learning

of density map generation for scale-diversified crowd scenes.

3. PROPOSED METHOD
3.1. Feature Aggregation with Multi-Scale Feature En-
coder
In this section, we develop a unified neural network module,

termed as Multi-Scale Feature Encoder (MSFE), to model the

scale variation of people. Inspired by previous works [1, 17],

we develop our MSFE with multiple columns of CNNs and

each column is designed to handle the different range of s-

cale variation. Differing from these methods, we implement

our MSFE by dilated convolution layers [18] with different

dilated rates instead of normal convolutional layers with dif-

ferent kernel sizes and channels in each column. As a good

alternative of pooling layer, dilated convolutional layers use
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Fig. 2: Left: The architecture of the Multi-Scale Feature Encoder (MSFE). The block with text k, c, r denotes a dilated convolutional layer with k × k kernel

size and c output channels. The dilation rate is expressed as r. Right: The architecture of the proposed multi-scale aggregation network with a coarse-to-fine

scheme. “
⊕

” denotes feature concatenation and “↑ 2” refers to upsample by two times in width and height.“3× 3” refers to the convolutional layer to regress

comprehensive density maps as described in Sec 3.1

sparse kernels to enlarge the receptive field without increas-

ing the number of parameters or reducing the spatial resolu-

tion. In our MSFE, each column has different receptive fields

by adopting particular dilation rates, yielding improved the s-

cale diversity of features. The detail of MSFE is described

as following. Similar to MCNN [1], our MSFE is composed

of three columns of CNNs, each of which consists of four

dilated convolutional layers. A ReLU layer is applied after

every dilated convolutional layer. As shown in the left of Fig-

ure 2, the dilated convolutional layers at the same level have

the same kernel size and channel number, and their param-

eters are shared. To learn the feature corresponding to heads

of various scales, we apply different dilation rates in each col-

umn. In the first column, the dilated convolutional layers with

dilation rate 1, which turns into normal convolutions, are used

to extract the feature. The second and third columns utilize

the convolutional layers with bigger dilation rates to enlarge

the receptive field. Finally, we fuse the output features of

these columns with an element-wise maximization operation

to generate the scale robust representation.

3.2. Progressive Refinement with Multi-Scale Inputs
As shown in Figure 4, there may exist a mass of tiny heads in

some public scenes. Most of the current methods utilize the

convolutional neural networks with multiple pooling layers

to generate density maps with low resolution, which are too

rough to localize these tiny heads. To handle this issue, we

design our network architecture with a coarse-to-fine scheme,

which takes multiple scaled versions of the input image to

generate a fine density map in high resolution via progressive

refinement. In particular, our model is built upon two stacked

CNNs. The first CNN takes the original image as the input to

extract the feature and generate a coarse density map, roughly

identifying crowd regions. Then, the image is resized to two

times larger and fed into the second CNN to refine the fea-

ture of the first CNN, yielding improved the quality of density

maps.

The detail of our network architecture is shown in the

right of Figure 2. The first CNN consists of a front-end Fully

Convolutional Network (FCN) and three stacked Multi-Scale

Feature Encoder (MSFE). Specifically, the FCN is the first

ten layers of VGG16 [9] with three pooling layers, while the

channel number of each MSFE is set to 256. Given an im-

age I ∈ RH×W , where H and W are the height and width

of the image, we feed it into the network to extract the fea-

ture. We denoted the feature generated by ith MSFE of the

first CNN as f i
1. Inspired by the DSN [19], for each MSFE,

we feed its feature f i
1 into a convolutional layer with kernel

size 3 × 3 to regress a density map mi
1, which will help to

accelerate the convergence with the deep supervision on side

responses. Finally, we obtain a comprehensive density map

m1 ∈ R
H
8 ×W

8 by feeding the concatenation of m1
1, m2

1 and

m3
1 into a weighted-fusion convolutional layer with kernel

size 3 × 3. As shown in Figure 4, this density map m1 can

roughly localize crowd regions, but it fails to estimate the ac-

curate number of people in the image. Thus, we utilize the

second CNN to generate a fine density map.

The second CNN shares the similar network architecture

of the first CNN, but it has much fewer parameters in the

MSFE. Specifically, the channel numbers of there MSFE are

256, 128 and 64 respectively. Firstly, the image I is resized

to 2H × 2W via bilinear interpolation and fed into the front-

end FCN of the second CNN, the output feature of which is

denoted as fv
2 ∈ H

4 × W
4 . Then, this feature is used to refine

the output of the first CNN. After upsampled by two times in

width and height, the feature f3
1 is concatenated with fv

2 and

fed into the three MSFE in the second CNN. Same with the

first CNN, a side density map f i
2 is also computed after the ith

MSFE. Further, we concatenate f1
2 , f2

2 , f3
2 and the upsampled

density map f1 ∈ R
H
4 ×W

4 to produce the final density map f2
with a 3×3 convolutional layer. As shown in Figure 4, f2 can

exhibit the accurate spatial location of the crowd. The whole

coarse-to-fine scheme can infer in an end-to-end manner.

3.3. Local Correlation Learning with Multi-Scale Struc-
tural Similarity
Most of the previous approaches optimized their models with

the pixel-wise Euclidean loss, which would cause the blurring

effect in the density maps. Recently, Cao et al. [16] used a

combination of Euclidean loss and single-scale structural sim-

ilarity loss to train their networks, but their estimated maps

still far from satisfactory. In this section, we utilize a Multi-
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Fig. 3: Multi-scale structural similarity measurement. X0 is the estimated

density map and Y0 is the corresponding ground truth. CONV is the dilated

convolutional layer with a normalized Gaussian kernel.

Scale Structural Similarity (MS-SSIM) loss to enforce our

networks to learn the local correlation of multi-scale patch-

es on the density maps. For convenience in the following,

we denoted the estimated density map and the corresponding

ground truth as X and Y respectively.

Single-Scale SSIM: As a common evaluation metric in

image quality assessment, SSIM computes the similarity be-

tween two images/maps from three local statistics, i.e. mean,

variance and covariance. Following [20], a 5× 5 normalized

Gaussian kernel with a standard deviation of 1.5 is used to

estimate these local statistics. The estimation is easily im-

plemented with a dilated convolutional layer with parame-

ter W = {W (o)|o ∈ O,Oi = {−2r,−r, 0, r, 2r}, Oj =
{−2r,−r, 0, r, 2r}}, where o is offset from the center and the

dilation rate r is used to control the size of receptive field re-

gion in the Multi-Scale SSIM. For each location p = (i, j)
on X , the local mean μX(p), variance σ2

X(p) and covariance

σ2
XY (p) can be computed by:

μX(p) =
∑

o∈O W (o) ·X(p+ o), σ2
X(p) =

∑
o∈O W (o) · [X(p+ o)− μX(p)]2, (1)

σ2
XY (p) =

∑
o∈O W (o) · [X(p+ o)− μX(p)] · [Y (p+ o)− μX(p)] (2)

The mean μY (p) and variance σ2
Y (p) of Y can be obtained

with the same formulation. Further, the luminance compari-

son L, contrast comparison C and structure comparison S be-

tween X and Y can be calculated point by point as follows:

L(X,Y ) = 2μXμY +c1
μ2
X+μ2

Y +c1
, C(X,Y ) = 2σXσY +c2

σ2
X+σ2

Y +c2
, S(X,Y ) = σXY +c3

σXσY +c3
; (3)

where c1, c2 and c3 are small constants to avoid division by

zero.

Multi-Scale SSIM: As suggested in previous work [4],

we argue that the estimated density map that is consistent with

the ground-truth density map in multi-scale local correlation,

better captures the crowd density distribution than those from

solely pixel-wise or single scale consistency pursuits. With

this insight, we build a CNN with M dilated convolutional

layers, whose parameters are set to the fixed Gaussian kernel

W described above. Specifically, M is set to 5 in our work

and the dilation rates of these layers are 1,2,3,6 and 9 respec-

tively. These layers are designed to calculate the SSIM of

larger regions, which measure the local correlation compari-

son on multiple scales. As shown in Figure 3, after feeding X
and Y into the CNN, we calculate the contrast and structure

comparison after each layer. As in [4], the luminance compar-

ison is computed only at the last layer. Finally, the MS-SSIM

loss is defined as following:

MS-SSIM(X,Y ) = [LM−1(XM−1, YM−1)
αM−1 ] ·∏M−1

j=0

[
Cj(Xj , Yj)

βj
] · [Sj(Xj , Yj)

γj ] , (4)

MS-SSIM Loss = 1−MS-SSIM(X,Y ), (5)

where the exponents αj , βj and γj are used to adjust the

relative importance of different components and they are set

with the same values as in [4]. Specifically, X0=X and Y0=Y
as shown in Figure3. In our work, both the first and second

CNN in proposed MVSAN are optimized with the MS-SSIM

loss.

3.4. Implementation Details
Ground Truth Generation: During the training phase,

we generate the ground truth density map with the geometry-

adaptive kernels [1]. For each head annotation in a given im-

age, assuming that the distances to its n nearest neighbors are

denoted as {d1, d2, ..., dn}, we label this head as a normalized

Gaussian kernel with spread σ = s · 1
N

∑N
i=1 di. In our work,

N is equal to 3 and the ratio s is set to 0.3. The radius of the

Gaussian kernel is 6σ× 6σ. Some ground truth density maps

are visualized in Figure 4.

Networks Optimization: We implement our crowd

counting network with the Pytorch [21] toolbox. The two

front-end FCN are initialized with the VGG [9] model pre-

trained on ImageNet [22]. The filter weights of other con-

volutional layers are randomly initialized by Gaussian distri-

butions with zero mean and standard deviation of 0.01. The

learning rate is set to 1e-5. At each iteration, 16 patches with

size 224× 224 cropped from the images are fed into the net-

works. We first train the first CNN for 450 epochs and then

jointly train whole networks for 250 epochs with Adam [23]

optimizer.

4. EXPERIMENTS

4.1. Evaluation Metric
We evaluate the accuracy of crowd counting estimation with

the widely adopted mean absolute error (MAE) and mean

squared error (MSE), which are defined as:

MAE = 1
N

∑N
i=1

∣∣∣Ĉi − Ci

∣∣∣ ;MSE =

√
1
N

∑N
i=1

∣∣∣Ĉi − Ci

∣∣∣2 (6)

where N is the number of test samples, Ĉi is the estimated

crowd count as the sum of all pixel values on the generated

density map and Ci is the ground true crowd count. Moreover,

the quality of density maps is measured with two standard

metrics: SSIM and PSNR [24].

4.2. Evaluations and Comparisons

In this section, we evaluate and compare our proposed method

with other state-of-the-art methods in the following represen-

tative datasets of relatively sparse, congested and highly con-

gested crowd scenes.
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Table 1: Model Evaluation

(a) ShanghaiTech

Method
Part A Part B

MAE MSE MAE MSE

MCNN [1] 110.2 173.2 32.0 49.8

Cascaded-MTL [25] 101.3 152.4 20.0 31.1

Switch-CNN [8] 90.4 135.0 21.6 33.4

CP-CNN [2] 73.6 106.4 20.1 30.1

CSRNet [3] 68.2 115.0 10.6 16.0

SANet [16] 67.0 104.5 8.4 13.6

Ours 59.2 87.2 9.0 14.0

(b) UCF-QNRF
Method MAE MSE

Idees et al. [26] 315 508

MCNN [1] 277 426

Cascaded-MTL [25] 252 514

SwitchCNN [8] 228 445

Resnet101 [27] 190 277

Densenet201 [28] 163 226

Idees et al. [29] 132 191

Ours 102 170

Table 2: Quality of Density Maps

Method SSIM PSNR

MCNN [1] 0.52 21.4

CP-CNN [2] 0.72 21.72

CSRNet [3] 0.76 23.79

Ours 0.77 23.17

ShanghaiTech: ShanghaiTech crowd counting dataset [1]

is composed of Part A and Part B. Part A contains 482 con-

gested images crawled from the Internet with an average

amount of about 500 annotations every image. Part B col-

lects 716 images of relative sparse crowd scenes from streets

containing roughly 123 annotated peoples on average. The

comparison to other six recent works is shown in Table 1a.

Our method achieves the lowest MAE and MSE in Part A

with 11.6% and 16.5% lower error than the existing best

method respectively. In Part B, our method outperforms most

methods and achieves a comparable performance with best-

performing method SANet [16], which uses patch-based in-

ference. The outstanding performance indicates the accuracy

and robustness of our method on the crowd counting on both

congested scenes and relatively sparse scenes. Meanwhile, as

shown in Table 2, the generated density maps of our method

has the highest average SSIM than the other three methods

and a close PSNR with the current best-performing method.

The generated density maps of our method yield high image

quality as well as accurate count estimations.

UCF-QNRF: The lately proposed UCF-QNRF dataset

[29] contains 1535 images of highly congestive scenes and

about 815 annotations per image on average. This dataset

contains the most diverse set of viewpoints, densities and peo-

ple scales and becomes the most challenging dataset. Follow-

ing [29], we compare our method with other seven state-of-

art methods. As shown in Table 1b our method achieves the

lowest error metrics and outperforms current best-performing

methods with 22.7% lower MAE and 10.9% lower MSE. To

summarise, our proposed MVSAN can accurately count the

number of crowds from relative sparse, congested to hight

congested scenes better than current state-of-the-art methods.

4.3. Ablation Study on ShanghaiTech Part A

Feature view multi-scale aggregation: Three networks,

directly regression network from the front-end FCN feature

and the proposed coarse network with MSFE in one colum-

n (the left column on Figure 2) and three columns, are con-

structed and trained under the proposed MS-SSIM loss. Their

performances in the Part A of ShanghaiTech are compared

in Table 3b. The network that directly regresses the densi-

Table 3: Ablation Study

(a) Different Criterions
Scale Criterion MAE MSE

Single

L2 68.9 112.7

SSIM[20] 79.8 140.3

SSIM + L2[16] 68.3 109.8

Scale Criterion MAE MSE

Multi
MSSSIM-O[4] 65.8 110.1

MSSSIM-D 61.8 96.6

(b) Effectiveness of MSFE block
Network MAE MSE

W/O MSFE 66.2 107.0

W/ Single-Column MSFE 64.5 100.1

W/ Three-Column MSFE 61.8 96.6

(c) Multi-scale Inputs Validation
Input Scale MAE MSE SSIM PSNR

Single ×1 61.8 96.6 0.72 21.39

Single ×2 66.8 111.3 0.78 24.03

Multi ×1,×2 59.2 87.4 0.77 23.17

ty map from the front-end FCN feature performs poorer than

the other two with MSFE. With more scale variance recep-

tiveness than one-column MSFE, the proposed three-column

MSFE achieves the lowest MAE and MSE. Specifically, the

proposed three-column MSFE achieves 6.6% and 9.6% lower

MAE and MSE than the network without MSFE.

Criterion view multi-scale aggregation: Best perfor-

mance of the coarse network trained with different criteria

of single scale and multiple scales are listed in Table 3a. Sin-

gle scale criteria include Euclidean criterion(L2), SSIM and

their combination as in [16]. Meanwhile multi-scale crite-

ria include the original MS-SSIM(MSSIM-O) as in [4] and

our proposed MS-SSIM(MSSSIM-D), which innovatively re-

places the low-pass filter and downsample operations on the

original one with dilation convolution. Performance of model

trained under single scale criteria including is not comparable

with those trained under Multi-scale criteria. Specifically, our

designed MSSSIM-D achieves 7.2% lower MAE and 13.9%

lower MSE than the original MSSSIM-O baseline.

Input view multi-scale aggregation: We compare the

performance of our network trained in the coarse-to-fine

scheme with multi-scale inputs and its two sub-networks

trained with single scale input, the original images and the

upsampled images respectively. The sub-network operating

in original images is termed as coarse sub-network and the

other is denoted as refiner sub-network in the following. As

presented in Table 3c, the coarse sub-network and the refiner

sub-network perform poorer than the whole MVSAN trained

with multi-scale inputs. With the trained coarse sub-network

and additional input scale to the refiner network, our net-

work trained in a coarse-to-fine scheme achieves 4.2% and

9.5% lower MAE and MSE than the coarse network. The im-

age quality is also greatly improved. Three testing samples

and their ground truth density maps, and the estimated den-

sity maps of the coarse sub-network and the whole network

are presented in Figure 4. Limited by single scale input, the

coarse sub-network is unable to distinguish people in congest-

ed place separately and responses with the continuous high-

response burring areas along with inexact counts. These areas

are refined with the aid of the refiner network using additional

input scale as shown in Figure 4. We could observe the pro-

gressive refinement on density maps and count estimations

with multi-scale inputs from left to right in Figure 4.
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Fig. 4: Original crowd scenes, estimations of coarse network and final esti-

mations and the ground truth density maps are displayed from left to right.

People counts are labeled in red on images. Zoom in on details.

5. CONCLUSION

In this work, we propose a novel multi-view scale aggrega-

tion network(MSVAN) for high-quality density maps gener-

ation and accurate crowd count estimation. It comprehen-

sively handles the scale variation from feature view, input

view and criterion view. In the feature view, the proposed

multi-scale feature encoder(MSFE) effectively encodes scale-

diversified feature and integrates to front-end convolutional

feature extractor, which together make up the sub-networks

of our MSVAN. In the input view, with scaled versions of an

image as inputs, sub-networks aggregate features and coarse

density maps in lower resolution from their preceding sub-

network to generate refined density maps. In the criteria view,

we design a multi-scale structural similarity criterion to en-

force our MSVAN to exploit local correlation on the patch-

es of varying scales to generate high-quality density map.

Experiments on two datasets of crowd scenes with various

crowd density show the superior performance of our method-

s over the state-of-the-art methods with accurate estimations

and high-quality density maps.
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